Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease
Tipo de material:
TextoSeries ; Bioresource Technology, 245, p.1491-1497, 2017Trabajos contenidos: - Tian, K
- Tai, K
- Chua, B. J. W
- Li, Z
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-19993 (Browse shelf(Opens below)) | Available |
Engineering a methanol tolerant lipase is of great importance in biodiesel production. Here, the first semi-rational method for directed enzyme evolution to enhance methanol tolerance by targeting high B-factor residues for iterative saturation mutagenesis (ISM)is reported. The best double mutant, TLL-S105C/D27R, retained 71 percent of its original activity after incubation in methanol, showing 30 percent greater methanol tolerance than TLL. TLL-S105C/D27R also displayed 27 percent higher activity over TLL. Structure modelling suggested that the increased stability of TLL-S105C/D27R was caused by the formation of a new hydrogen bond which stabilized the protein structure. E. coli (TLL-S105C/D27R)-catalyzed biotransformation of waste grease produced biodiesel in 81 percent yield in 8h, showing improvement over the 67 percent yield for E. coli (TLL), while retaining 92 percent productivity after 4 cycles of biotransformation of waste grease. The engineered TLL mutant shows high potential for commercial biodiesel production
There are no comments on this title.
