Image from Google Jackets

Preparation of carotenoid cleavage dioxygenases for X-ray crystallography

Tipo de material: TextoTextoSeries ; Methods in Enzymology, 671, p.243-271, 2022Trabajos contenidos:
  • Daruwalla, A
  • Sui, X
  • Kiser, P. D
Tema(s): Recursos en línea: Resumen: Carotenoid cleavage dioxygenases (CCDs)constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase)that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-20267 (Browse shelf(Opens below)) Available

Carotenoid cleavage dioxygenases (CCDs)constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase)that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.

There are no comments on this title.

to post a comment.