Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil
Tipo de material:
TextoSeries International Journal of Biological Macromolecules. 255, 128022, 2024, DOI: 10.1016/j.ijbiomac.2023.128022Trabajos contenidos: - Aycan D
- Gül ?
- Yorulmaz V
- Alemdar N
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-21281 (Browse shelf(Opens below)) | Available |
Browsing CICY shelves, Shelving location: Documento préstamo interbibliotecario, Collection: Ref1 Close shelf browser (Hides shelf browser)
In the current study, novel gelatin microspheres/methacrylated alginate hydrogel combined system (5-FU-GELms/Alg-MA) was developed for gastric targeted delivery of 5-fluorouracil as an anticancer agent. While water-in-oil emulsification method was used for the production of 5-FU-GELms, Alg-MA was synthesized through methacrylation reaction occurred by epoxide ring-opening mechanism. Then, 5-FU-GELms/Alg-MA hydrogel system was fabricated by the encapsulation of 5-FU-GELms into Alg-MA hydrogel network via UV-crosslinking. To evaluate applicability of fabricated 5-FU-GELms/Alg-MA as gastric targeted drug delivery vehicle, both swelling and in vitro drug release experiments were carried out at pH 1.2 medium resembling gastric fluid. Compared to drug release directly from 5-FU-GELms, 5-FU-GELms/Alg-MA hydrogel system showed more controlled and sustained drug release profile with lower amount of cumulative release starting from early stages, since hydrogel matrix created a barrier to the diffusion of 5-FU included in microspheres. Drug release kinetic results obtained by applying various kinetic models to release data showed that the mechanism of 5-FU release from 5-FU-GELms/Alg-MA hydrogel system is controlled by Fickian diffusion. All results revealed that 5-FU-GELms/Alg-MA hydrogel integrated system could be potentially utilized as gastric targeted drug carrier to enhance therapeutic efficacy and reduce systemic side effects in gastric cancer treatments for future studies. © 2023 Elsevier B.V.
There are no comments on this title.
