De novo biosynthesis of carminic acid in Saccharomyces cerevisiae
Tipo de material:
TextoSeries Metabolic Engineering, 76, p.50-62, 2023Trabajos contenidos: - Zhang, Q
- Wang, X
- Zeng, W
- Xu, S
- Li, D
- Yu, S
- Zhou, J
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-21876 (Browse shelf(Opens below)) | Available |
Browsing CICY shelves, Shelving location: Documento préstamo interbibliotecario, Collection: Ref1 Close shelf browser (Hides shelf browser)
Artículo
Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4′-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the β-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 μg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye.
There are no comments on this title.
